
Journal of Biomolecular NMR, 23: 263–270, 2002.
KLUWER/ESCOM
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

263

Protein sequential resonance assignments by combinatorial enumeration
using 13Cα chemical shifts and their (i, i−1) sequential connectivities

Michael Andrec∗ & Ronald M. Levy
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road,
Piscataway, NJ 08854-8087, U.S.A.

Received 5 April 2002; Accepted 27 June 2002

Key words: computational complexity, high throughput, structural genomics, tree search, triple-resonance

Abstract

The need for the structural characterization of proteins on a genomic scale has brought with it demands for new
technology to speed the structure determination process. In NMR, one bottleneck is the sequential assignment
of backbone resonances. In this paper, we explore the computational complexity of the sequential assignment
problem using only 13Cα chemical shift data and Cα (i, i − 1) sequential connectivity information, all of which
can potentially be obtained from a single three-dimensional NMR spectrum. Although it is generally believed that
there is too much ambiguity in such data to provide sufficient information for sequential assignment, we show
that a straightforward combinatorial search algorithm can be used to find correct and unambiguous sequential
assignments in a reasonable amount of CPU time for small proteins (approximately 80 residues or smaller) when
there is little missing data. The deleterious effect of missing or spurious peaks and the dependence on match
tolerances is also explored. This simple algorithm could be used as part of a semi-automated, interactive assignment
procedure, e.g., to test partial manually determined solutions fo uniqueness and to extend these solutions.

Introduction

The explosion of genomic data in recent years and ini-
tiatives in structural genomics have lead to the demand
for new technologies to speed the protein structure de-
termination process. Protein structure determination
by NMR as it has typically been practiced is rela-
tively slow, insofar as it requires the collection of many
multidimensional spectra, their processing and peak-
picking, the sequential assignment of backbone and
side chain resonances, the translation of NOE cross-
peaks into specific internuclear constraints, and the
generation of protein conformations which satisfy all
of the available constraints. Considerable efforts have
been made to automate the latter steps of this process
(Moseley and Montelione, 1999), and new types of
data such as residual dipolar couplings promise to sub-
stantially reduce data collection and analysis time by
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avoiding the especially time consuming steps of side
chain resonance and NOE crosspeak assignment (De-
laglio et al., 2000; Andrec et al., 2001). Another means
by which increased efficiency could be achieved is
by reducing the amount of time needed to acquire
and process the NMR data itself, since most current
automated assignment strategies require input peak
lists from a relatively large number of spectra (e.g.,
Zimmerman et al., 1997).

There exist triple-resonance NMR experiments
such as the HNCA (Kay et al., 1990) which provide
interresidue connectivity information by correlating
amide 1H and 15N shifts with intraresidue and preced-
ing 13Cα nuclei. In favorable cases, these experiments
can be run on proteins with natural abundance 13C
(Tian et al., 2001), further increasing their usefulness
in a structural genomics context. However, it has been
generally accepted that there is too much chemical
shift degeneracy among the Cα nuclei to allow for un-
ambiguous sequential assignment using only the data
provided by such an experiment. In order to reduce
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this degeneracy, various laboratories have recently
proposed assignment strategies using data from triple-
resonance experiments which have been modified to
allow the measurement of scalar couplings, residual
dipolar couplings, and/or differential line broadenings
(Zweckstetter and Bax, 2001; Tian et al., 2001). This
additional data can then be used to provide additional
match criteria to supplement the Cα (i, i − 1) connec-
tivities (Zweckstetter and Bax, 2001) or to provide a
structural filter to reduce the number of possible se-
quential linkages (Tian et al., 2001). In this paper,
we investigate the nature of the combinatorial problem
of generating a sequential resonance assignment using
only 13Cα chemical shifts and their (i, i−1) connectiv-
ities. We will assume throughout that the appropriate
three-dimensional NMR spectrum has been properly
acquired, processed, and peak-picked, that the result-
ing peaks have been correctly collated into a list of
ordered pairs of 13C chemical shifts corresponding to
intra- and interresidue Cα nuclei (e.g., Table 1), and
that the amino acid sequence of the protein is known.
We show that such data can in fact lead to correct and
unambiguous sequential assignments for proteins un-
der approximately 80 residues in size, provided that
the input peak lists are sufficiently clean. We also in-
vestigate the deleterious effect of missing or spurious
peaks and the dependence on match tolerances. Such
a minimalist strategy is a workable approach to the se-
quential assignment problem for those cases where the
data are accurate and complete. This study provides a
baseline result for protein sequential resonance assign-
ment using minimal connectivity information. This
approach may be further developed by incorporating
additional information from other NMR experiments.
With modifications, the combinatorial enumeration
described here may also be used simply as an aid to
confirm and extend manual assignments.

Theory and methods

The algorithm used in this paper is a recursive depth-
first tree search similar to approaches used by earlier
combinatorially oriented automated assignment strate-
gies (e.g., Xu et al., 1994). We begin by listing all
possible spin pairs (e.g., lines in Table 1) that could be
assigned to the second residue (the N-terminal residue
not being visible in an amide proton detected experi-
ment). We then take the first element of that list and
generate a second list containing all spin pairs that
could possibly follow that element. We then take the

first element of that second list and continue in a sim-
ilar manner until we either have assigned all of the
residues in the protein or we reach a dead end (i.e., the
list of possible successors is empty). In the either case,
we then back up to the nearest unused list element
and repeat the process (Figure 1). Proline residues
(which do not give rise to peaks in amide-detected
NMR experiments) are treated as placeholders in our
algorithm. In other words, no spin pair is assigned to a
proline position, and that position provides no connec-
tivity information with regards to the feasibility of a
succeeding spin pair. Our algorithm can be expressed
very concisely as a single recursive subroutine, and
is easily implemented in languages such as perl that
support list manipulation and recursion.

The size of the resulting search tree is limited by
constraints on the interresidue chemical shift connec-
tivities and amino acid type, which are given by match
tolerances Tconn (typically 0.1 ppm) and Taa (rang-
ing from 3.6 to 7.6 ppm). For example, suppose that
the (i, i − 1) spin pair (44.97 ppm, 54.25 ppm) has
been assigned to residue number 2 and that residue
3 is a glutamic acid. Candidate spin pairs for residue
3 must have an i − 1 chemical shift in the range of
44.97±Tconn ppm, and an i chemical shift in the range
of 56.6 ± Taa ppm, where 56.6 ppm is the random
coil shift for glutamic acid (Wishart and Case, 2001).
Since most triple-resonance experiments are detected
through the amide proton, there will be no (i, i − 1)
spin pairs corresponding to proline residues or the
N-terminal residue. However, the Cα chemical shifts
corresponding to those residues do appear as the i − 1
shift of the spin pair for the succeeding residue, and
we insist that that shift lie within ±Taa ppm of the ran-
dom coil shift for prolines or the N-terminal residue.
It should be noted that our search procedure is deter-
ministic and exhaustive, and therefore is guaranteed
to find all possible sequential assignments consistent
with the Taa and Tconn match tolerances.

The algorithm was tested on a total of nine-
teen peak lists ranging in size from 33 to 85
residues. Eighteen of these were ‘synthetic’ lists
generated using chemical shift data from the
BioMagResBank (BMRB) (Seavey et al., 1991,
http://www.bmrb.wisc.edu) re-referenced by the
Wishart laboratory (http://redpoll.pharmacy.ualber-
ta.ca/RefDB). The peak lists were generated by cre-
ating (i, i − 1) spin pairs based on the sequential
assignment in the database after adding an error ε to
each i − 1 shift. Each ε was independently and iden-
tically distributed according to 0.6 U (−0.09, 0.09) +
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Table 1. An example of the input chemical shift data used in this study. Shown is the data for
the rubredoxin hydrophobic core mutant (W3Y, I23V, L32I) obtained by Tian et al. (2001) (data
courtesy of J.H. Prestegard). Index numbers have been assigned arbitrarily, and asterisks indicate
missing data due to spectral overlap or missing peaks

Index Cα(i) (ppm) Cα(i − 1) (ppm) Index Cα(i) (ppm) Cα(i − 1) (ppm)

2 59.08 59.82 30 55.71 54.97

3 59.79 58.28 31 57.05 65.67

4 54.93 58.00 32 52.70 57.03

5 55.71 63.96 33 53.86 56.97

6 51.50 57.57 34 56.97 55.39

7 51.37 45.93 35 60.49 62.17

8 60.44 45.88 36 56.91 63.56

9 57.57 59.26 37 54.76 51.75

10 56.35 55.71 38 63.96 45.47

12 59.30 60.45 39 53.20 44.67

13 61.98 55.71 40 55.56 58.76

14 58.01 53.86 41 56.95 59.64

15 58.86 51.48 42 58.77 61.95

16 58.17 61.19 43 52.61 57.02

17 59.65 53.15 44 53.15 56.91

18 60.78 55.57 45 45.48 64.70

19 61.20 46.28 46 57.02 58.82

20 58.28 56.62 47 45.92 59.10

21 61.10 63.71 48 45.88 59.04

22 62.43 59.07 49 60.23 ∗
23 56.63 54.74 50 46.26 52.58

24 59.10 62.42 51 44.66 52.78

26 57.12 ∗
28 55.41 60.28

29 59.04 61.09

Figure 1. A fragment of a hypothetical search tree for the sequential assignment process. Since the N-terminal residue cannot be seen in amide
proton detected NMR experiments, no spin pairs can be assigned to residue position 1. There are four spin pairs (2, 12, 10, and 56) that could
potentially correspond to residue position 2. We examine the first of these (spin pair 2), and find that three spin pairs (31, 3, and 47) could
potentially follow it. Taking the first of these (spin pair 31), we find that none of the remaining spin pairs satisfy the requirements for following
spin pair 31. This constitutes a dead end, and we move on to the next nearest unexamined spin pair (spin pair 3 at residue position 3). It does
have potential successors (spin pairs 12 and 4). Spin pair 12 at residue position 4 is another dead end, therefore we continue on to spin pair 4,
and proceed in a similar manner until we have completely searched the entire tree. Note that the same spin pair can appear in more than one
place in the tree (e.g., spin pair 12 at residue positions 2 and 4), provided that no repeats occur on a given descending path. Proline residues are
treated as placeholders to which no spin pairs are assigned (see text for details).
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0.4 N(0, 0.005), where U(a, b) is the uniform prob-
ability density between a and b, and N(m, s) is the
normal probability density with mean m and standard
deviation s (in units of ppm). Only those regions of
the proteins with no missing data (as shown in Ta-
ble 2) were considered, therefore the data in these peak
lists are complete. The nineteenth was an experimental
peak list for rubredoxin obtained from the Prestegard
laboratory (Tian et al., 2001) (Table 1). In contrast to
the 18 ‘synthetic’ peak lists, this data set contains two
spin pairs with missing i − 1 data due to spectral over-
lap. All calculations were done using a perl script on
an SGI server with a 180 MHz MIPS R10000 proces-
sor. The software used in this study is available from
the authors upon request.

Results and discussion

Combinatorial searches were first performed on the
nineteen lists of (i, i − 1) spin pairs using a connec-
tivity tolerance Tconn of 0.1 ppm and an amino acid
tolerance Taa of 6.5 or 7.0 ppm (Table 2). While a con-
nectivity tolerance of 0.1 ppm is fairly tight by some
standards, it is not unreasonable, especially since the
digital resolution in the 13C dimension can be made
larger than usual as only one NMR spectrum is needed
for the assignment. Of course, this will be limited by
increased T2 relaxation for larger proteins, however
direct assignment methods such as those described
here will likely be of limited utility for such proteins
even for small Tconn values. A Taa value of approxi-
mately 7.0 ppm is consistent with previous estimates
of the variability of 13Cα chemical shifts (Grzesiek
and Bax, 1993). For most of the proteins examined,
these choices of Tconn and Taa gave a very small num-
ber of possible assignments, typically 1 or 2, and
required less than 30 minutes of CPU time for proteins
under 70 amino acids long (Table 2). The two notable
exceptions to this were the de novo designed 3-helix
bundle protein (BMRB #4126), which gave 32 possi-
ble assignments at Taa = 7.0 ppm, and the cardiotoxin
from Naja Atra (BMRB #4966), for which no assign-
ment could be found. The distribution of secondary
shifts (equal to the observed shift minus the random
coil shift) for the BMRB #4966 data set appears to be
somewhat upfield shifted (perhaps due to residual mis-
referencing), resulting in one of the residues having a
−7.57 ppm secondary shift. Since this is larger than
our cutoff of ± 7.0 ppm, no assignment was found.
The reasons for the relatively large number of assign-

ments for BMRB #4126 may be due to the fact that
this data set has more chemical shift degeneracy than
typical among the other data sets studied. We can mea-
sure the degree of degeneracy by a mean connection
number, which we define to be the average number
of (i, i − 1) spin pairs which can possibly precede or
succeed a given spin pair at a given Tconn tolerance
irrespective of amino acid type. The BMRB #4126
peak list has a mean connection number of 4.8 at
Tconn = 0.1 ppm. This is higher than the connection
numbers for the other proteins studied, which typically
are in the range of 3 to 4, and is consistent with the
hypothesis that the large number of assignments for
BMRB #4126 is due to unusually large chemical shift
degeneracy.

We next investigated the degree to which the Taa

tolerance could be made tighter and still give correct
solutions. Since in our case the correct assignments
are known, the minimal Taa which will still give the
correct assignment for a given protein is simply the
secondary shift with the largest absolute magnitude.
The results of the combinatorial search using those Taa

tolerances are shown in Table 2 as the second entry for
each protein. As expected, the number of possible as-
signments using the minimal Taa are generally smaller
(going from 32 down to 2 for BMRB #4126), and the
CPU time required decreases substantially (by nearly
a factor of 80 in the case of BMRB #1642). Of the
nineteen cases tested, only five (BMRB #4223, #4126,
#4160, #4162, and rubredoxin) did not give a unique
solution at the minimal Taa. Of these, four resulted
in only two solutions, and for three of those (BMRB
#4126, #4160, and rubredoxin) the two solutions were
identical except for the interchange of two residues (13
and 37, 9 and 20, and 9 and 42, respectively).

Since the minimal Taa is a priori unknown, it is
important to know whether it could be reliably found
in practice. In those cases where the minimal Taa gives
only one solution, that solution is the correct one and
obviously any further reduction in Taa would give no
solutions. Therefore, in these cases the minimal Taa

can be found to arbitrary precision by simple brack-
eting and bisection. Specifically, if one has found a
Taa value T

(l)
aa which gives no solutions, and a larger

Taa value T
(u)
aa which gives one solution, then one can

rerun the combinatorial search algorithm using a Taa

value of T
(m)
aa = 1/2(T

(l)
aa +T

(u)
aa ). If the T

(m)
aa tolerance

gives no solutions, then we set T
(l)
aa equal to T

(m)
aa , oth-

erwise we set T
(u)
aa equal to T

(m)
aa . This procedure can
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Table 2. A summary of results for the combinatorial assignment procedure (in order of increasing number of residues). All results
shown here were obtained using Tconn = 0.1 ppm. Each protein has two entries, the second of which corresponds to the minimal Taa

value (see text)

Protein (residue range) BMRB accession number Number of residues Taa (ppm) Number of solutions CPU time

in peak list (min:sec)a

p53 dimer(1-33) 4934 33
7.00

4.37

2

1

0 : 01

0 : 01

Ovomucoid 3rd domain (17-49) 4864 33
7.00

4.98

1

1

0 : 01

0 : 01

Cardiotoxin from Naja Atra

(21 − 60)
4966 40

7.00

7.57

0

1

0 : 15

3 : 16

Lac repressor DNA complex (4-46) 4813 43
7.00

6.19

1

1

0 : 02

0 : 01

TATA binding protein (4-49) 4223 46
7.00

5.35

2

2

0 : 01

0 : 01

Chicken cartilage matrix protein

(1 − 47)
4055 47

7.00

4.85

4

1

0 : 07

0 : 02

RNase H1 (16-63) 4424 48
7.00

3.64

1

1

0 : 01

0 : 01

M13 major coat protein (1-50) 4209 50
7.00

5.78

3

1

0 : 05

0 : 05

RNA1 modulator protein (7-57) 4072 51
7.00

5.92

1

1

3 : 11

0 : 30

Rubredoxin (1-53) –b 53
7.00

5.25

6

2

1 : 45

0 : 17

HHCC domain of HIV 1 integrase

(1 − 55)
4619 55

7.00

6.09

1

1

5 : 58

2 : 14

Apokedarcidin (1-56) 4036 56
7.00

4.13

1

1

0 : 05

0 : 01

de novo designed 3-helix bundle

protein (3-58)
4126 56

7.00

4.80

32

2

10 : 56

0 : 30

Tn916 integrase DNA-binding

domain (3-63)
4160 61

7.00

4.78

2

2

1 : 11

0 : 10

Neural cell adhesion molecule

module-1 (1-63)
4162 63

7.00

4.72

6

3

29 : 49

0 : 30

Adenylate kinase complex w/

inhibitor AP5A (1-67)
4193 67

7.00

5.20

1

1

0 : 08

0 : 02

EH1 domain of mouse Eps15

(2-69)
4140 68

7.00

5.45

2

1

6 : 11

0 : 13

Tendamistat (1-74) 1642 74
7.00

5.05

1

1

160 : 02

2 : 03

Phosphocarrier protein (1-85) 2371 85
6.50

5.90

1

1

≈ 78 h

≈ 10 h

aCPU times of less than one second have been rounded up to one second.
bsee Table 1.



268

then be repeated until the minimal Taa has been found
to the desired precision.

In cases where the minimal Taa gives more than
one solution, it is conceivable that reducing Taa further
might eliminate the correct solution while retaining
the others, thereby leading to an erroneous assign-
ments. To test this, we ran the combinatorial assign-
ment algorithm using a Taa tolerance equal to the
minimal tolerance minus 0.01 ppm for the five proteins
that gave more than one solution at the minimal Taa .
In all five cases, no solutions were found. If this result
turns out to be general, then the correct solution will
not he missed by setting Taa too low, and therefore the
minimal Taa can always be found by bracketing and
bisection. It is not clear how general this result may be
in practice, especially when the data may be corrupted
by inaccurate peakpicking, though it is interesting to
note that no such problem arose in the case of the
experimental rubredoxin peaklist. Nonetheless, a user
of this algorithm should exercise caution when using
small Taa values.

As with any exhaustive combinatorial search algo-
rithm, we expect the running times to increase expo-
nentially with the size of the protein and with the size
of the match tolerances. In order to explore this, we
repeated the combinatorial assignment for the TATA
binding protein peak list (BMRB #4223) using differ-
ent values of Taa . The results are shown in Figure 2.
As expected, the running time increases exponentially
as Taa increases from 5.4 to 18 ppm, then flattens to
a plateau at a CPU time of approximately 50 min for
very large Taa (where the amino acid type information
is effectively being ignored in the assignment process).
The location of the ‘knee’ at approximately 18 ppm
coincides with the total range of 13Cα random coil
shifts (from glycine at 45.1 ppm to trans-proline at
63.3 ppm) (Wishart and Case, 2001). The number of
assignments found also increases exponentially, reach-
ing a plateau value of nearly 1000. This result confirms
the intuition of most protein NMR spectroscopists that
Cα (i, i − 1) connectivities alone contain too much
degeneracy to allow for unambiguous sequential as-
signment. However, the incorporation of even vague
amino acid type information dramatically simplifies
the combinatorics of the problem: A Taa cutoff of
15 ppm reduces the number of solutions by more than
an order of magnitude, while a cutoff of 10 ppm gives
only five solutions. While we expect the exponential
dependence of CPU time on Taa to be a general fea-
ture, the details can vary considerably from protein to
protein. For example, the analogous results for RNase

H1 (BMRB #4424) (data not shown) also shows an
exponential increase in CPU time as a function of Taa

which plateaus at approximately Taa = 18 ppm, how-
ever the plateau CPU time is less than 9 s, and no
more than two solutions are ever found. This dramatic
difference can be explained in part by the fact that the
BMRB #4424 peak list has much less degeneracy than
BMRB #4223 as measured by the mean connection
number (2.7 vs 3.7). Similar results are also seen for
the running time as a function of Tconn. For example,
doubling Tconn from 0.1 to 0.2 ppm for tendamistat
(BMRB #1642) increases the running time from 2 min
to 49 min but still results in only 5 solutions. It is
unlikely that such a large Tconn value will be nec-
essary, given that the 13C digital resolution could be
made appropriately large. In addition, the use of more
sophisticated peak fitting procedures can produce pre-
cision in peak location estimates far in excess of the
digital resolution (Prestegard et al., 1999).

The reason for the surprisingly small number of
solutions is in part due to the restrictions on amino
acid type imposed by Taa , but is also inherent in the
combinatorics of the problem itself. This can be seen,
for example, if we attempt to assign only the first 30
residues of BMRB #4424 using the complete peak
list and a Taa of 25.0 ppm (in order to remove all
amino acid type information). In this case the algo-
rithm still returns rather quickly (less than 9 s CPU
time), however it now gives 89 solutions, compared
to the two solutions obtained using the full sequence.
Eighty seven of these 89 solutions turn out not to be
feasible for the full protein, however, since all attempts
to extend them to the full 48 residues lead to dead ends.
In other words, the requirement to find assignments for
an entire sequence of known length itself introduces
constraints on the combinatorics, whereby otherwise
feasible solutions are rendered infeasible when the as-
signment cannot be extended to the required length
using the spin pairs left over. Interestingly, reducing
Taa to the minimal value of 3.64 ppm yields only
the correct assignment for the 30 residue truncated
assignment problem. In addition to providing insight
into the nature of the combinatoric problem of se-
quential assignment, these results also suggest that the
presence of spurious peaks in the peak list due to spec-
tral artifacts, sample heterogeneity, or slow chemical
exchange may not lead to serious consequences. At
worst, they may increase the number of feasible solu-
tions, but they are unlikely to significantly increase the
running time of the algorithm.
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Figure 2. Dependence of the number of solutions (A) and running time (B) on the amino acid type tolerance Taa for the ‘TATA binding protein’
(BMRB #4223) peak list.

The presence of missing data, however, can be
a much more serious problem. The case where one
member of a small number of spin pairs is missing
is not a severe problem, as can be seen in the results
for rubredoxin presented above. However, if several
spin pairs are completely missing (as can happen at
N- and/or C-termini or in flexible loops), this can
greatly complicate the combinatorics of the problem.
This is not surprising, since in our scheme we are

forced to include a ‘wildcard’ spin pair in the peak list
corresponding to each missing residue. Each of these
wildcard spin pairs can potentially follow any other
spin pair in the peak list, and can potentially appear at
any position in the amino acid sequence. In the case
of very small proteins and few missing residues, the
problem is still manageable. For example, replacement
of the spin pairs corresponding to the residues 2 and 3
of the p53 dimer data (BMRB #4934) with wildcards
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results in 18 solutions using the minimal Taa , only 9
of which are distinct (due to the equivalence of the
two wildcards), and requires less than 6 minutes of
CPU time. As in the complete data case, reducing Taa

below its minimal value results in no solutions. For
more missing residues or larger proteins, the problem
quickly becomes unmanageable.

Conclusions

We have shown that in favorable cases one can in fact
go reasonably far in backbone sequential assignments
of small proteins using a simple combinatorial search
on 13Cα chemical shifts and their (i, i − 1) connectiv-
ities. It appears that such a strategy will be sufficient
for proteins approximately 70 amino acids in length or
smaller with little or no missing data, provided that
the peak list input is sufficiently clean. Of course,
this represents a tiny fraction of all proteins which
NMR spectroscopists may wish to study, especially
since real-world peaklists are often far from clean
due to spectral artifacts, overlap, or inaccurate peak
picking. However, this work provides a better under-
standing of the real information content of the simplest
inter-residue connectivity data. Furthermore, it pro-
vides a useful baseline for what can be accomplished
using exhaustive enumeration. More extensive data
providing more matching criteria are easily obtainable
using HNCA-type experiments via the measurement
of scalar and residual dipolar couplings (Zweckstetter
and Bax, 2001; Tian et al., 2001). The addition of such
data will expand the feasibility of direct combinator-
ial methods for the sequential assignment of backbone
resonances in proteins. It should be made clear, how-
ever, that the algorithm described here can be easily
applied to data from multiple triple-resonance NMR
experiments provided that the data have been collated
into appropriate ‘spin systems’ and that appropriate
amino acid type and connectivity tolerances have been
defined.

The approach described here differs considerably
from that used by human beings in the course of
manually assigning NMR resonance data. In our ap-
proach, an exhaustive enumeration scheme is used,
and otherwise completely feasible assignments which
lead to dead ends are eliminated. In other words,
our algorithm operates globally by trying to find the
complete assignment of the entire protein. Human be-
ings, by contrast, tend to generate ‘islands’ of assign-
ments having varying degrees of confidence, which

are then arranged and connected with the remain-
ing resonances. It may be possible to combine the
‘machine’ and ‘human’ approaches in an interactive,
semi-automated manner for systems which are not
amenable to fully automatic sequential assignment.
For example, one can use the software tool described
here to assess the uniqueness of partial assignments
generated manually, and to generate alternative assign-
ments which satisfy the given tolerances if they exist.
Alternatively, further development of the algorithm
could be made to incorporate some of the processes
used by a human being in solving the assignment
problem, such as the construction and independent
evaluation of partial solutions.
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